ISSN: 2053-3578

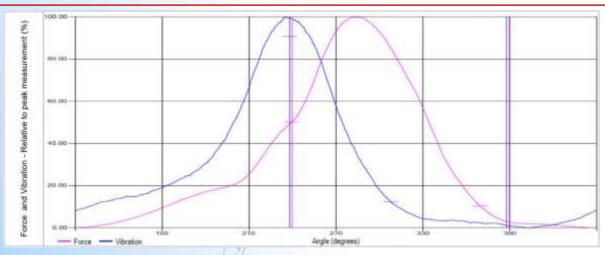
I.F. 12.34

ОНЛАЙН-ОЦЕНКА ЗАПОЛНЕНИЯ И КРАТКОСРОЧНЫЙ ПРОГНОЗ ПАРАМЕТРОВ БАРАБАННОЙ МЕЛЬНИЦЫ НА ОСНОВЕ РЕГРЕССИИ ГАУССОВЫХ ПРОЦЕССОВ И БАЙЕСОВСКОЙ ОПТИМИЗАЦИИ

Темур Махкамов,

магистр, ведущий специалист Агентство «Узатом»,
Ташкент, Узбекистан
E-mail: t.makhkamov@uzatom.uz

Аннотация. Представлена воспроизводимая процедура онлайн-оценки угла пересыпания (*toe*), плечевого угла и процента заполнения барабана / по двум каналам


— тензоболту и виброускорению корпуса. Методика соединяет детерминированную физическую часть (геометрия поперечного сечения, извлечение toe/shoulder на обороте) со статистической частью: регрессией гауссовых процессов (GPR) и байесовской оптимизацией гиперпараметров (ВО). Апостериорная дисперсия GPR калибруется по метрике Coverage и используется для простого контроля качества прогноза. На DEM-треках и производственных рядах достигаются конкурентные значения МАЕ при согласованных интервалах доверия, что важно для практики предиктивного обслуживания.

Ключевые слова: барабанная мельница; угол *toe*; степень заполнения; GPR; байесовская оптимизация; доверительные интервалы

Эффективность помола в барабанных мельницах чувствительна к геометрии загрузки и режимам (каскадный/водопадный). Оперативная оценка *J*, toe ushoulder затруднена шумами, пропусками и отсутствием прямых измерителей. Цель работы — дать инженерно простой способ расчёта параметров на уровне оборота и короткого прогноза с контролируемой неопределённостью. В качестве модели принята регрессия гауссовых процессов (GPR), обеспечивающая совмест- но предсказание и апостериорную дисперсию; подбор ядра и гиперпараметров выполняет байесовская оптимизация (BO)

ISSN: 2053-3578 I.F. 12.34

Рис. 1: Один оборот: инвертированный тензосигнал (SG) и виброскорость корпуса (Acc); вертикальными линиями отмечены найденные *toe* и *shoulder*

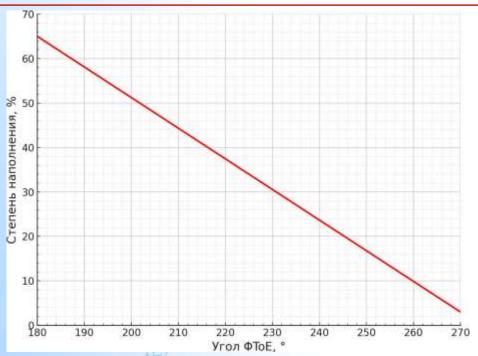
1 Физическая модель и наблюдаемые сигналы

1.1 Сигналы

Используются синхронные ряды: тензосигнал на болте футеровки (SG) и модуль виброускорения корпуса (Acc). Предобработка включает починку пропусков, инверсию SG, сглаживание, нормировку по обороту и отбраковку невалидных оборотов.

1.2 Геометрия и связь /-toe

Пусть *toe* определён согласованно по SG/Acc на обороте. Процент заполнения


/ вычисляется через площадь сегмента круга с учётом лифтера. Зависимость
/(toe) используется далее, как физический якорь для проверки согласованности
оценок

1 Режимы работы и DEM-проверки

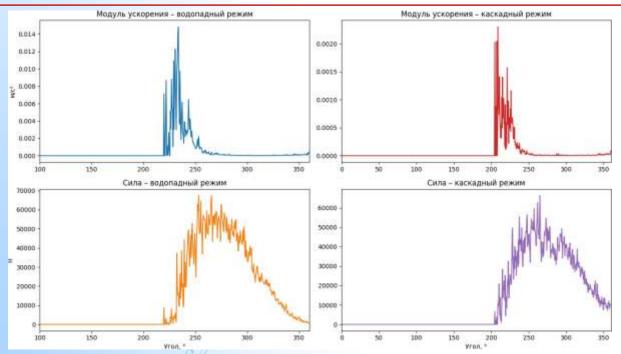
Для интерпретации сигналов использован DEM-сценарий одного оборота в двух режимах. На рис. 3 показано различие динамики загрузки; это объясняет частотные и амплитудные особенности SG/Acc и влияет на робастность извлечения *toe*

ISSN: 2053-3578 I.F. 12.34

Рис. 2: Теоретическая связь процента заполнения *J* с углом *toe* (калибровочная кривая для заданной геометрии барабана и лифтера).

2 Извлечение параметров на обороте и проверка согласованности Алгоритм:

(i) поиск *toe* как резкого шага SG, подтверждённого локальным максимумом Acc в допустимом секторе, (ii) оценка / по геометрии (см. рис. 2), (iii) валида- ция по физическим ограничениям (границы /, устойчивость между соседними оборотами). рис. 4 показывает типичный пример.


3 Краткосрочный прогноз: GPR и байесовская оптимизация

3.1 Постановка

Прогнозируются J и/или производные показатели на горизонтах $H \in \{10, 30, 60\}$ минут по скользящему окну $W \in \{60, 120, 200\}$ минут

ISSN: 2053-3578 I.F. 12.34

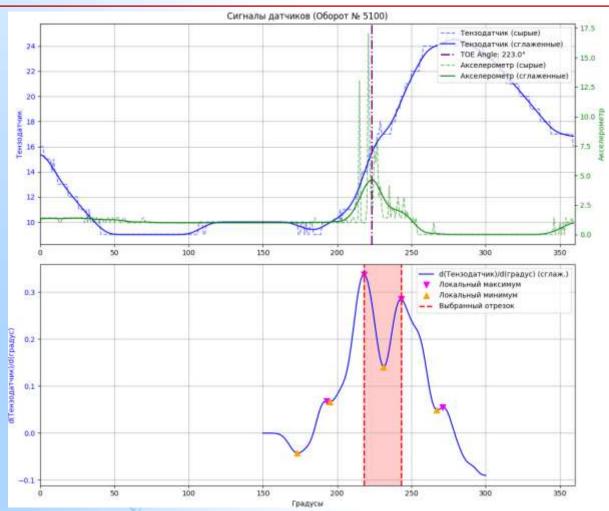
Рис. 3: Один оборот в DEM: слева — водопадный режим, справа — каскадный; различие траекторий частиц определяет характер SG/Acc.

3.2 Модели и обучение

Рассматриваются ядра Matern ($\nu = 1/2$, 3/2, 5/2), Rational Quadratic (RQ) и RBF+RQ. ВО (Expected Improvement) выбирает ядро и гиперпараметры (ℓ , σ_f , σ_f по валидационной MAE. Апостериорная дисперсия калибруется масштабирова- нием для достижения номинальной Coverage.

4 Эксперимент и результаты

4.1 Данные и базовые сравнения

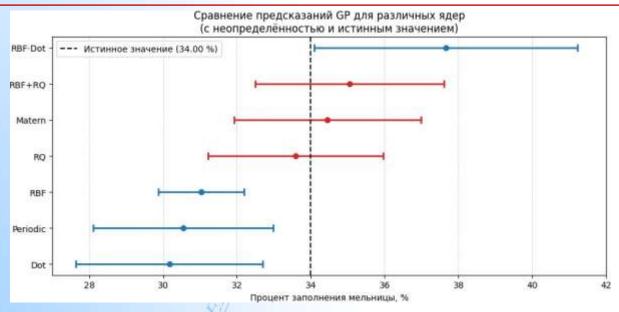

Оценка проведена на (i) DEM-данных и (ii) производственных отрезках. Для сравнения использованы ARIMA, ETS и компактная LSTM.

4.2 Метрики

Качество прогноза измерено по MAE; качество интервалов — по Coverage (доля наблюдений, попавших в $\pm k\hat{\sigma}$ при номинале 90%). Для раннего предупреждения дополнительно считались AUROC и медианное опережение

ISSN: 2053-3578 I.F. 12.34

Рис. 4: Иллюстрация извлечения *toe* на обороте №5100: согласованный признак по SG и Acc.


4.3 Основные наблюдения

- Увеличение окна W до 120–200 минут стабилизирует Coverage без ущерба для МАЕ на горизонтах 10–30 минут.
- Лучшая пара «точность-надёжность» ядра Matern и RQ; RBF+RQ обеспечивает компромисс при смене режима.

Калибровка дисперсии выравнивает эмпирическую Coverage до 88–91% при номинале 90%

ISSN: 2053-3578 I.F. 12.34

Рис. 5: Сводная оценка ядер: интервальные прогнозы μ±σ относительно эталона; Маtern и RQ обеспечивают согласованное покрытие.

Таблица 1: Сводка по трём сегментам: МАЕ (п.п. /) и Coverage (номинал 90%)

Модель	MAE	Coverage	Примечание
3	\downarrow	↑	
ARIMA/ETS (база)	1.9–	65–78%	нет доверительных интервалов
63/	2.8	по конструкции	
LSTM (комп.)	1.6-	60–75%	нестабильная калибровка
0)	2.2		
GPR+BO (Matern/RQ)	1.4–	88–91%	после калибровки $\hat{\sigma}$
	1.9		

4.4 Сводная таблица (пример формата)

5 Обсуждение

Практическая ценность подхода — прозрачная связка физики (геометрия, валидируемые углы) и статистики (апостериорные интервалы). ВО снимает ручной тюнинг и отслеживает дрейф. Ограничения: кубическая сложность GPR по *И* и чувствительность к смене режима; на практике используются индукционные точки и периодическая перенастройка

6 Заключение

Предложена воспроизводимая процедура: SG+Acc → извлечение *toe*// на обороте → GPR-прогноз с ВО и калибровкой Coverage. На DEM и реальных данных пока-

ISSN: 2053-3578

I.F. 12.34

заны конкурентные МАЕ и согласованные интервалы. Метод готов к внедрению в контур предиктивного обслуживания.

Литература

- 1. Rasmussen C.E., Williams C.K.I. Gaussian Processes for Machine Learning. MIT Press, 2006.
- 2. Snoek J., Larochelle H., Adams R.P. Practical Bayesian Optimization of Machine Learning Algorithms // NIPS, 2012.
 - 3. Wills B.A., Finch J. Wills' Mineral Processing Technology. 8th ed., 2016.
- 4. Powell M.S., Mainza A. Grind curves and mill optimisation // Minerals Engineering, 2009.
 - 5. Gretton A. et al. A Kernel Two-Sample Test // JMLR, 2012.

ISO 13373-2:2016. Condition monitoring and diagnostics of machines—Vibration condition monitoring—Part 2

