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Abstract. This article examines the application of graphics processing units in data 

compression algorithms, analyzing current approaches to parallelizing compression processes 

and evaluating their effectiveness compared to traditional central processor-based methods. The 

analysis reveals that graphics processing units demonstrate significant performance advantages 

in specific compression scenarios, particularly when processing large data volumes, though 

implementation complexity and hardware requirements present notable considerations.  
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Аннотация. В данной статье рассматривается применение графических 

процессоров в алгоритмах сжатия данных, анализируются современные подходы к 

распараллеливанию процессов сжатия и оценивается их эффективность по сравнению с 

традиционными методами на основе центральных процессоров. Анализ показывает, что 

графические процессоры демонстрируют значительные преимущества в 

производительности в определённых сценариях сжатия, особенно при обработке 

больших объёмов данных, хотя сложность реализации и требования к аппаратному 

обеспечению представляют собой существенные факторы для рассмотрения. 

Ключевые слова: графические процессоры, сжатие данных, параллельные 

вычисления, ускорение на GPU, сжатие без потерь, сжатие с потерями, CUDA, 

вычислительная эффективность. 

Annotatsiya. Ushbu maqolada ma'lumotlarni siqish algoritmlarida grafik 

protsessorlardan foydalanish masalasi o'rganilgan, siqish jarayonlarini parallellashtirish 

bo'yicha zamonaviy yondashuvlar tahlil qilingan hamda ularning samaradorligi an'anaviy 

markaziy protsessorlarga asoslangan usullar bilan solishtirilgan. Tahlil shuni ko'rsatadiki, 

grafik protsessorlar ma'lum siqish stsenariylarida, ayniqsa katta hajmdagi ma'lumotlarni qayta 

ishlashda sezilarli ishlash afzalliklarini namoyish etadi, garchi amalga oshirish murakkabligi va 

apparat talablari muhim omillar hisoblanadi. 



 

           Vol.5 No.1 JANUARY (2026)  79 

INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT 

ISSN: 2053-3578    I.F. 12.34 

 

 

 

Kalit so'zlar: grafik protsessorlar, ma'lumotlarni siqish, parallel hisoblash, GPU 

tezlashtirish, yo'qotishsiz siqish, yo'qotishli siqish, CUDA, hisoblash samaradorligi. 

INTRODUCTION 

The exponential growth of digital data generation across all sectors of modern society has 

created unprecedented demands for efficient storage and transmission solutions. Data 

compression algorithms serve as fundamental tools for addressing these challenges, reducing 

storage requirements and bandwidth consumption while preserving information integrity or 

acceptable quality levels. Traditional compression implementations relying on central 

processing units face inherent limitations when processing massive datasets, as sequential 

execution architectures struggle to meet real-time processing requirements in contemporary 

applications [1]. 

Graphics processing units, originally designed for rendering visual content, have emerged 

as powerful platforms for general-purpose computing tasks due to their massively parallel 

architecture. Modern GPUs contain thousands of processing cores capable of executing 

simultaneous operations, presenting opportunities for substantial acceleration of 

computationally intensive algorithms [2]. The application of GPU computing to data 

compression represents a convergence of algorithmic optimization and hardware advancement 

that merits systematic investigation. 

METHODOLOGY AND LITERATURE ANALYSIS 

The research methodology employed in this study follows a systematic literature review 

approach, examining peer-reviewed publications, conference proceedings, and technical 

documentation from domestic and international sources. Central processors optimize for 

sequential task execution with sophisticated branch prediction and cache hierarchies, while 

graphics processors prioritize throughput through massive parallelism with simpler individual 

cores [3]. Compression algorithms exhibit varying degrees of parallelization potential based on 

their inherent computational structures. Lossy compression techniques, particularly those 

employed in image and video processing, often demonstrate favorable parallelization 

characteristics due to block-based processing approaches that enable independent computation 

across data segments [4].  

Research by Ozsoy and Swany demonstrates that dictionary-based methods such as LZ77 

require careful algorithmic restructuring to exploit GPU parallelism effectively, as traditional 

implementations rely on sequential scanning and pattern matching that poorly suit massively 

parallel architectures [5].  The CUDA programming platform developed by NVIDIA has 
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emerged as the predominant framework for GPU-accelerated compression research, providing 

programming abstractions and optimization tools that facilitate algorithm implementation [6]. 

Karimov and Yusupov examined CUDA-based implementations of various compression 

algorithms, finding that memory bandwidth frequently constitutes the primary performance 

bottleneck rather than computational capacity, necessitating careful attention to data transfer 

optimization between host and device memory [7].  

Comparative analyses in existing literature reveal that compression ratio achievements 

remain largely consistent between CPU and GPU implementations of identical algorithms, with 

GPU acceleration primarily affecting processing speed rather than compression effectiveness 

[8]. International research has extensively examined specific algorithm implementations, with 

entropy coding receiving particular attention due to its ubiquity across compression standards. 

Adaptive arithmetic coding and Huffman coding variants have been successfully parallelized 

through table-based approaches and parallel prefix operations, though achieving optimal 

performance requires balancing parallelism granularity against synchronization overhead [9].  

RESULTS AND DISCUSSION 

The synthesis of analyzed literature reveals consistent patterns regarding GPU-

accelerated compression performance across diverse implementation contexts. Quantitative 

findings from multiple studies enable comparative evaluation of speedup factors and efficiency 

metrics, while qualitative analysis illuminates implementation considerations and deployment 

factors. 

 

Table 1. Performance comparison of GPU-accelerated compression algorithms 

Compression 

Algorithm 

Average GPU 

Speedup Factor 

Optimal Data 

Size Threshold 

Primary 

Application 

Domain 

JPEG encoding 15-25x >2 megapixels Image 

processing 

H.264 video 

encoding 

8-12x >720p 

resolution 

Video 

streaming 

LZ77 variants 3-6x >10 

megabytes 

General 

lossless 

Huffman coding 5-8x >1 megabyte Entropy 

coding 
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Deflate 

algorithm 

4-7x >5 megabytes Archive 

compression 

 

The data presented in Table 1 synthesizes performance findings reported across analyzed 

sources, revealing substantial variation in acceleration factors across algorithm categories. 

Image and video compression algorithms demonstrate the highest speedup factors, reflecting 

their inherent parallelization suitability through block-based processing structures. The discrete 

cosine transform operations fundamental to JPEG encoding distribute naturally across GPU 

cores, enabling near-linear scaling with available computational resources under optimal 

conditions [4]. Video encoding benefits similarly, with motion estimation and compensation 

stages offering additional parallelization opportunities that compound acceleration effects. 

Lossless compression algorithms exhibit more modest speedup factors, consistent with 

theoretical expectations regarding sequential dependencies inherent to dictionary-based 

methods. The 3-6x acceleration range for LZ77 variants represents significant improvement 

over sequential execution while acknowledging fundamental algorithmic constraints that limit 

parallelization potential. Implementation complexity for these algorithms substantially exceeds 

that required for embarrassingly parallel image processing operations, requiring sophisticated 

approaches to dependency management and workload distribution. 

 

Table 2. Implementation factors affecting GPU compression efficiency 

Factor Category Impact 

Level 

Mitigation 

Complexity 

Research 

Consensus 

Memory transfer 

overhead 

High Medium Strong 

agreement 

Thread 

divergence 

Medium High Moderate 

agreement 

Hardware 

availability 

High Low Strong 

agreement 

Algorithm 

adaptation effort 

Medium High Strong 

agreement 

Power 

consumption 

Medium Low Limited 

research 

 



 

           Vol.5 No.1 JANUARY (2026)  82 

INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT 

ISSN: 2053-3578    I.F. 12.34 

 

 

 

Table 2 presents analysis of implementation factors influencing practical GPU 

compression deployment, synthesized from challenges and considerations discussed across 

reviewed literature. Memory transfer overhead emerges as the most consistently identified 

performance limitation, as data movement between host system memory and GPU device 

memory introduces latency that can substantially diminish net acceleration benefits for smaller 

datasets [7]. This factor explains the data size thresholds identified in Table 1, below which 

CPU-based compression may achieve superior overall performance despite slower per-

operation execution. 

Thread divergence, occurring when parallel threads follow different execution paths due 

to conditional branching, presents medium impact with high mitigation complexity. 

Compression algorithms frequently employ conditional logic for pattern matching and 

encoding decisions, creating divergence scenarios that reduce effective parallelism. 

Researchers have developed branch-free algorithm variants and predication techniques to 

address this challenge, though such modifications increase implementation complexity and may 

alter computational characteristics [10]. 

Hardware availability considerations encompass both physical GPU presence and 

capability matching between algorithm requirements and available resources. While GPU 

computing has achieved broad adoption in data centers and high-performance computing 

environments, edge computing and embedded systems may lack suitable hardware, 

constraining deployment contexts. Power consumption emerges as an underexplored factor in 

reviewed literature, with limited research examining energy efficiency comparisons between 

CPU and GPU compression implementations despite relevance to mobile and resource-

constrained environments. 

CONCLUSION 

This systematic analysis of graphics processing unit application in data compression 

algorithms reveals substantial acceleration potential alongside meaningful implementation 

considerations. GPU-accelerated compression demonstrates speedup factors ranging from 3x 

to 25x depending on algorithm characteristics, with image and video compression exhibiting 

superior parallelization suitability compared to lossless dictionary-based methods. Memory 

transfer overhead emerges as the primary practical limitation, establishing minimum data size 

thresholds below which GPU acceleration provides diminished benefits. 

The findings support strategic GPU deployment for high-throughput compression 

applications processing large data volumes, while acknowledging that traditional CPU-based 
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implementations remain appropriate for smaller-scale or resource-constrained contexts. Future 

research directions should address energy efficiency comparisons, hybrid CPU-GPU 

optimization strategies, and emerging hardware architectures that may alter current 

performance relationships. As data generation continues accelerating across all sectors, GPU-

accelerated compression will likely assume increasing importance in meeting processing 

demands while managing storage and transmission resource constraints. 
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