INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT
ISSN: 2053-3578 I.F. 12.34

USE OF GRAPHICS PROCESSING UNITS IN DATA COMPRESSION
ALGORITHMS

Xalilova Shahnoza Uchkunovna
Lecturer at Navoiy Digital Technology Technical School

Field: Computer Engineering ("Computer Systems Design™)

Abstract. This article examines the application of graphics processing units in data
compression algorithms, analyzing current approaches to parallelizing compression processes
and evaluating their effectiveness compared to traditional central processor-based methods. The
analysis reveals that graphics processing units demonstrate significant performance advantages
In specific compression scenarios, particularly when processing large data volumes, though
implementation complexity and hardware requirements present notable considerations.

Keywords: graphics processing units, data compression, parallel computing, GPU
acceleration, lossless compression, lossy compression, CUDA

AHHoOTauusi. B 1aHHON craTthe paccMmaTpuBaeTcss NpPUMEHEHHE TpadUuecKux
IIPOLIECCOPOB B aJIrOpUTMax CXKaTusd OAHHBIX, aHAIU3HUPYIOTCA COBPEMEHHBIC ITOJAXOJbI K
paciapayiICJIMBAaHUTO IIPOLCCCOB CKATUA U OLICHUBACTCA UX 3(1)(1)6KTI/IBHOCTL MO0 CPpaBHCHUIO C
TPAAUIUOHHBIMHA METOJAMHU Ha OCHOBC LICHTPAJIbHBIX ITPOLIECCOPOB. Anammz IIOKAa3bIBACT, UTO
rpaduueckue IIPOLECCOPEI JEMOHCTPHUPYIOT 3HA4YUTEIILHBIC IpeuMyIIeCcTBa B
MIPOU3BOJAUTEIILHOCTA B OMPEACIEHHBIX CIICHApUSIX CXKaTUs, OCOOEHHO TpH 00paboTke
0O0JIBIINX 00BLEMOB JAAaHHBIX, XOTA CIOXHOCTb pCaIn3aliuu U TpC6OBaHI/I}I K anrapaTHoMy
00€CTeYeHUIO MPEACTABISAIOT CO00I CylIecTBEHHbIE (PaKTOPBI AJIsi pACCMOTPEHUS.

KioueBbie cJjioBa: rpaduyeckre MPOIECCOPhI, CXKATHUE JJIAHHBIX, IapaliebHbIE
BhIUKCIeHMs, yckopenne Ha GPU, cxarue 6e3 moreps, cxatue ¢ mnotepsamu, CUDA,
BBIYHUCIIUTCIIbHAsA B(I)(I)GKTI/IBHOCTB.

Annotatsiya. Ushbu magolada ma'lumotlarni sigish algoritmlarida grafik
protsessorlardan foydalanish masalasi o'rganilgan, sigish jarayonlarini parallellashtirish
bo'yicha zamonaviy yondashuvlar tahlil gilingan hamda ularning samaradorligi an‘anaviy
markaziy protsessorlarga asoslangan usullar bilan solishtirilgan. Tahlil shuni ko'rsatadiki,
grafik protsessorlar ma'lum sigish stsenariylarida, aynigsa katta hajmdagi ma'lumotlarni gayta
ishlashda sezilarli ishlash afzalliklarini namoyish etadi, garchi amalga oshirish murakkabligi va
apparat talablari muhim omillar hisoblanadi.

))) Vol.5 No.1 JANUARY (2026) { /8 }

INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT
ISSN: 2053-3578 I.F. 12.34

Kalit so'zlar: grafik protsessorlar, ma'lumotlarni sigish, parallel hisoblash, GPU

tezlashtirish, yo'qotishsiz sigish, yo'qotishli sigish, CUDA, hisoblash samaradorligi.
INTRODUCTION

The exponential growth of digital data generation across all sectors of modern society has
created unprecedented demands for efficient storage and transmission solutions. Data
compression algorithms serve as fundamental tools for addressing these challenges, reducing
storage requirements and bandwidth consumption while preserving information integrity or
acceptable quality levels. Traditional compression implementations relying on central
processing units face inherent limitations when processing massive datasets, as sequential
execution architectures struggle to meet real-time processing requirements in contemporary
applications [1].

Graphics processing units, originally designed for rendering visual content, have emerged
as powerful platforms for general-purpose computing tasks due to their massively parallel
architecture. Modern GPUs contain thousands of processing cores capable of executing
simultaneous operations, presenting opportunities for substantial acceleration of
computationally intensive algorithms [2]. The application of GPU computing to data
compression represents a convergence of algorithmic optimization and hardware advancement
that merits systematic investigation.

METHODOLOGY AND LITERATURE ANALYSIS

The research methodology employed in this study follows a systematic literature review
approach, examining peer-reviewed publications, conference proceedings, and technical
documentation from domestic and international sources. Central processors optimize for
sequential task execution with sophisticated branch prediction and cache hierarchies, while
graphics processors prioritize throughput through massive parallelism with simpler individual
cores [3]. Compression algorithms exhibit varying degrees of parallelization potential based on
their inherent computational structures. Lossy compression techniques, particularly those
employed in image and video processing, often demonstrate favorable parallelization
characteristics due to block-based processing approaches that enable independent computation
across data segments [4].

Research by Ozsoy and Swany demonstrates that dictionary-based methods such as LZ77
require careful algorithmic restructuring to exploit GPU parallelism effectively, as traditional
implementations rely on sequential scanning and pattern matching that poorly suit massively

parallel architectures [5]. The CUDA programming platform developed by NVIDIA has

))) Vol.5 No.1 JANUARY (2026) { 79 }

INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT
ISSN: 2053-3578 I.F. 12.34

emerged as the predominant framework for GPU-accelerated compression research, providing
programming abstractions and optimization tools that facilitate algorithm implementation [6].
Karimov and Yusupov examined CUDA-based implementations of various compression
algorithms, finding that memory bandwidth frequently constitutes the primary performance
bottleneck rather than computational capacity, necessitating careful attention to data transfer
optimization between host and device memory [7].

Comparative analyses in existing literature reveal that compression ratio achievements
remain largely consistent between CPU and GPU implementations of identical algorithms, with
GPU acceleration primarily affecting processing speed rather than compression effectiveness
[8]. International research has extensively examined specific algorithm implementations, with
entropy coding receiving particular attention due to its ubiquity across compression standards.
Adaptive arithmetic coding and Huffman coding variants have been successfully parallelized
through table-based approaches and parallel prefix operations, though achieving optimal
performance requires balancing parallelism granularity against synchronization overhead [9].

RESULTS AND DISCUSSION

The synthesis of analyzed literature reveals consistent patterns regarding GPU-
accelerated compression performance across diverse implementation contexts. Quantitative
findings from multiple studies enable comparative evaluation of speedup factors and efficiency
metrics, while qualitative analysis illuminates implementation considerations and deployment

factors.

Table 1. Performance comparison of GPU-accelerated compression algorithms

Compression Average GPU Optimal Data Primary
Algorithm Speedup Factor Size Threshold Application
Domain
JPEG encoding 15-25x >2 megapixels Image
processing
H.264 video 8-12x >720p Video
encoding resolution streaming
LZ77 variants 3-6X >10 General
megabytes lossless
Huffman coding 5-8x >1 megabyte Entropy
coding

))) Vol.5 No.1 JANUARY (2026) { 80 }

INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT
ISSN: 2053-3578 I.F. 12.34

Deflate 4-Tx >5 megabytes Archive

algorithm compression

The data presented in Table 1 synthesizes performance findings reported across analyzed
sources, revealing substantial variation in acceleration factors across algorithm categories.
Image and video compression algorithms demonstrate the highest speedup factors, reflecting
their inherent parallelization suitability through block-based processing structures. The discrete
cosine transform operations fundamental to JPEG encoding distribute naturally across GPU
cores, enabling near-linear scaling with available computational resources under optimal
conditions [4]. Video encoding benefits similarly, with motion estimation and compensation
stages offering additional parallelization opportunities that compound acceleration effects.

Lossless compression algorithms exhibit more modest speedup factors, consistent with
theoretical expectations regarding sequential dependencies inherent to dictionary-based
methods. The 3-6x acceleration range for LZ77 variants represents significant improvement
over sequential execution while acknowledging fundamental algorithmic constraints that limit
parallelization potential. Implementation complexity for these algorithms substantially exceeds
that required for embarrassingly parallel image processing operations, requiring sophisticated

approaches to dependency management and workload distribution.

Table 2. Implementation factors affecting GPU compression efficiency

>

Factor Category Impact Mitigation Research
Level Complexity Consensus
Memory transfer High Medium Strong
overhead agreement
Thread Medium High Moderate
divergence agreement
Hardware High Low Strong
availability agreement
Algorithm Medium High Strong
adaptation effort agreement
Power Medium Low Limited
consumption research

\Vol.5 No.1 JANUARY (2026)

18

INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT
ISSN: 2053-3578 I.F. 12.34

Table 2 presents analysis of implementation factors influencing practical GPU
compression deployment, synthesized from challenges and considerations discussed across
reviewed literature. Memory transfer overhead emerges as the most consistently identified
performance limitation, as data movement between host system memory and GPU device
memory introduces latency that can substantially diminish net acceleration benefits for smaller
datasets [7]. This factor explains the data size thresholds identified in Table 1, below which
CPU-based compression may achieve superior overall performance despite slower per-
operation execution.

Thread divergence, occurring when parallel threads follow different execution paths due
to conditional branching, presents medium impact with high mitigation complexity.
Compression algorithms frequently employ conditional logic for pattern matching and
encoding decisions, creating divergence scenarios that reduce effective parallelism.
Researchers have developed branch-free algorithm variants and predication techniques to
address this challenge, though such modifications increase implementation complexity and may
alter computational characteristics [10].

Hardware availability considerations encompass both physical GPU presence and
capability matching between algorithm requirements and available resources. While GPU
computing has achieved broad adoption in data centers and high-performance computing
environments, edge computing and embedded systems may lack suitable hardware,
constraining deployment contexts. Power consumption emerges as an underexplored factor in
reviewed literature, with limited research examining energy efficiency comparisons between
CPU and GPU compression implementations despite relevance to mobile and resource-
constrained environments.

CONCLUSION

This systematic analysis of graphics processing unit application in data compression
algorithms reveals substantial acceleration potential alongside meaningful implementation
considerations. GPU-accelerated compression demonstrates speedup factors ranging from 3x
to 25x depending on algorithm characteristics, with image and video compression exhibiting
superior parallelization suitability compared to lossless dictionary-based methods. Memory
transfer overhead emerges as the primary practical limitation, establishing minimum data size
thresholds below which GPU acceleration provides diminished benefits.

The findings support strategic GPU deployment for high-throughput compression
applications processing large data volumes, while acknowledging that traditional CPU-based

))) Vol.5 No.1 JANUARY (2026) { 82 }

INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT
ISSN: 2053-3578 I.F. 12.34

implementations remain appropriate for smaller-scale or resource-constrained contexts. Future
research directions should address energy efficiency comparisons, hybrid CPU-GPU
optimization strategies, and emerging hardware architectures that may alter current
performance relationships. As data generation continues accelerating across all sectors, GPU-
accelerated compression will likely assume increasing importance in meeting processing

demands while managing storage and transmission resource constraints.

REFERENCES
s Salomon, D. Data Compression: The Complete Reference / D. Salomon. —
London: Springer-Verlag, 2007. — 1092 p.
2. Kirk, D.B. Programming Massively Parallel Processors: A Hands-on Approach

/ D.B. Kirk, W.W. Hwu. — San Francisco: Morgan Kaufmann, 2016. — 576 p.
3. Brnagumupos, A.A. [1apamiensHble BRIYUCICHUS Ha rpadUYECKUX MPOIEeccopax

/ A.A. Bnagumupos, C.C. IlerpoB // Bectnuk nndopmannonusix Texnonoru. — 2019. — Ne 4.

—C. 45-52.

4. Nvidia Corporation. CUDA C++ Programming Guide. — Santa Clara: Nvidia,
2023. — 428 p.

5 Ozsoy, A. CULZSS: LZSS Lossless Data Compression on CUDA / A. Ozsoy,
M. Swany // IEEE International Conference on Cluster Computing. — 2011. — P. 403-411.

6. Sanders, J. CUDA by Example: An Introduction to General-Purpose GPU

Programming / J. Sanders, E. Kandrot. — Boston: Addison-Wesley, 2010. — 312 p.

7. Kapumos, ®.1. Ontumu3zanus anropuTMoB cxaTus JaHHbIX Ha ocHoBe CUDA
/ ®.1. Kapumos, B.T. FOcynos // Undopmaruka Ba sHepreruka myammosnapu. — 2020, — Ne 2.
—C. 78-85.

8. Balevic, A. Parallel Variable-Length Encoding on GPGPUs / A. Balevic // Euro-
Par 2009 Parallel Processing Workshops. — Berlin: Springer, 2010. — P. 26-35.

9. PacynoB, M.X. MabiymMOTIapHU CHUKHII YCYJUIADUHUHI 3aMOHAaBUU
énnamrysiapu / M.X. Pacynos // Ax6opot trexHonorusmapu sxypHamu. — 2021. — Ne 3. — C. 112-
119.

10. Patel, R.A. Parallel Lossless Data Compression on the GPU / R.A. Patel, Y.
Zhang, J. Mak // Innovative Parallel Computing Conference. — 2012. — P. 1-9.

))) Vol.5 No.1 JANUARY (2026) { 83 }

