

 Vol.5 No.1 JANUARY (2026) 78

INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT

ISSN: 2053-3578 I.F. 12.34

USE OF GRAPHICS PROCESSING UNITS IN DATA COMPRESSION

ALGORITHMS

Xalilova Shahnoza Uchkunovna

Lecturer at Navoiy Digital Technology Technical School

Field: Computer Engineering ("Computer Systems Design")

Abstract. This article examines the application of graphics processing units in data

compression algorithms, analyzing current approaches to parallelizing compression processes

and evaluating their effectiveness compared to traditional central processor-based methods. The

analysis reveals that graphics processing units demonstrate significant performance advantages

in specific compression scenarios, particularly when processing large data volumes, though

implementation complexity and hardware requirements present notable considerations.

Keywords: graphics processing units, data compression, parallel computing, GPU

acceleration, lossless compression, lossy compression, CUDA

Аннотация. В данной статье рассматривается применение графических

процессоров в алгоритмах сжатия данных, анализируются современные подходы к

распараллеливанию процессов сжатия и оценивается их эффективность по сравнению с

традиционными методами на основе центральных процессоров. Анализ показывает, что

графические процессоры демонстрируют значительные преимущества в

производительности в определённых сценариях сжатия, особенно при обработке

больших объёмов данных, хотя сложность реализации и требования к аппаратному

обеспечению представляют собой существенные факторы для рассмотрения.

Ключевые слова: графические процессоры, сжатие данных, параллельные

вычисления, ускорение на GPU, сжатие без потерь, сжатие с потерями, CUDA,

вычислительная эффективность.

Annotatsiya. Ushbu maqolada ma'lumotlarni siqish algoritmlarida grafik

protsessorlardan foydalanish masalasi o'rganilgan, siqish jarayonlarini parallellashtirish

bo'yicha zamonaviy yondashuvlar tahlil qilingan hamda ularning samaradorligi an'anaviy

markaziy protsessorlarga asoslangan usullar bilan solishtirilgan. Tahlil shuni ko'rsatadiki,

grafik protsessorlar ma'lum siqish stsenariylarida, ayniqsa katta hajmdagi ma'lumotlarni qayta

ishlashda sezilarli ishlash afzalliklarini namoyish etadi, garchi amalga oshirish murakkabligi va

apparat talablari muhim omillar hisoblanadi.

 Vol.5 No.1 JANUARY (2026) 79

INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT

ISSN: 2053-3578 I.F. 12.34

Kalit so'zlar: grafik protsessorlar, ma'lumotlarni siqish, parallel hisoblash, GPU

tezlashtirish, yo'qotishsiz siqish, yo'qotishli siqish, CUDA, hisoblash samaradorligi.

INTRODUCTION

The exponential growth of digital data generation across all sectors of modern society has

created unprecedented demands for efficient storage and transmission solutions. Data

compression algorithms serve as fundamental tools for addressing these challenges, reducing

storage requirements and bandwidth consumption while preserving information integrity or

acceptable quality levels. Traditional compression implementations relying on central

processing units face inherent limitations when processing massive datasets, as sequential

execution architectures struggle to meet real-time processing requirements in contemporary

applications [1].

Graphics processing units, originally designed for rendering visual content, have emerged

as powerful platforms for general-purpose computing tasks due to their massively parallel

architecture. Modern GPUs contain thousands of processing cores capable of executing

simultaneous operations, presenting opportunities for substantial acceleration of

computationally intensive algorithms [2]. The application of GPU computing to data

compression represents a convergence of algorithmic optimization and hardware advancement

that merits systematic investigation.

METHODOLOGY AND LITERATURE ANALYSIS

The research methodology employed in this study follows a systematic literature review

approach, examining peer-reviewed publications, conference proceedings, and technical

documentation from domestic and international sources. Central processors optimize for

sequential task execution with sophisticated branch prediction and cache hierarchies, while

graphics processors prioritize throughput through massive parallelism with simpler individual

cores [3]. Compression algorithms exhibit varying degrees of parallelization potential based on

their inherent computational structures. Lossy compression techniques, particularly those

employed in image and video processing, often demonstrate favorable parallelization

characteristics due to block-based processing approaches that enable independent computation

across data segments [4].

Research by Ozsoy and Swany demonstrates that dictionary-based methods such as LZ77

require careful algorithmic restructuring to exploit GPU parallelism effectively, as traditional

implementations rely on sequential scanning and pattern matching that poorly suit massively

parallel architectures [5]. The CUDA programming platform developed by NVIDIA has

 Vol.5 No.1 JANUARY (2026) 80

INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT

ISSN: 2053-3578 I.F. 12.34

emerged as the predominant framework for GPU-accelerated compression research, providing

programming abstractions and optimization tools that facilitate algorithm implementation [6].

Karimov and Yusupov examined CUDA-based implementations of various compression

algorithms, finding that memory bandwidth frequently constitutes the primary performance

bottleneck rather than computational capacity, necessitating careful attention to data transfer

optimization between host and device memory [7].

Comparative analyses in existing literature reveal that compression ratio achievements

remain largely consistent between CPU and GPU implementations of identical algorithms, with

GPU acceleration primarily affecting processing speed rather than compression effectiveness

[8]. International research has extensively examined specific algorithm implementations, with

entropy coding receiving particular attention due to its ubiquity across compression standards.

Adaptive arithmetic coding and Huffman coding variants have been successfully parallelized

through table-based approaches and parallel prefix operations, though achieving optimal

performance requires balancing parallelism granularity against synchronization overhead [9].

RESULTS AND DISCUSSION

The synthesis of analyzed literature reveals consistent patterns regarding GPU-

accelerated compression performance across diverse implementation contexts. Quantitative

findings from multiple studies enable comparative evaluation of speedup factors and efficiency

metrics, while qualitative analysis illuminates implementation considerations and deployment

factors.

Table 1. Performance comparison of GPU-accelerated compression algorithms

Compression

Algorithm

Average GPU

Speedup Factor

Optimal Data

Size Threshold

Primary

Application

Domain

JPEG encoding 15-25x >2 megapixels Image

processing

H.264 video

encoding

8-12x >720p

resolution

Video

streaming

LZ77 variants 3-6x >10

megabytes

General

lossless

Huffman coding 5-8x >1 megabyte Entropy

coding

 Vol.5 No.1 JANUARY (2026) 81

INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT

ISSN: 2053-3578 I.F. 12.34

Deflate

algorithm

4-7x >5 megabytes Archive

compression

The data presented in Table 1 synthesizes performance findings reported across analyzed

sources, revealing substantial variation in acceleration factors across algorithm categories.

Image and video compression algorithms demonstrate the highest speedup factors, reflecting

their inherent parallelization suitability through block-based processing structures. The discrete

cosine transform operations fundamental to JPEG encoding distribute naturally across GPU

cores, enabling near-linear scaling with available computational resources under optimal

conditions [4]. Video encoding benefits similarly, with motion estimation and compensation

stages offering additional parallelization opportunities that compound acceleration effects.

Lossless compression algorithms exhibit more modest speedup factors, consistent with

theoretical expectations regarding sequential dependencies inherent to dictionary-based

methods. The 3-6x acceleration range for LZ77 variants represents significant improvement

over sequential execution while acknowledging fundamental algorithmic constraints that limit

parallelization potential. Implementation complexity for these algorithms substantially exceeds

that required for embarrassingly parallel image processing operations, requiring sophisticated

approaches to dependency management and workload distribution.

Table 2. Implementation factors affecting GPU compression efficiency

Factor Category Impact

Level

Mitigation

Complexity

Research

Consensus

Memory transfer

overhead

High Medium Strong

agreement

Thread

divergence

Medium High Moderate

agreement

Hardware

availability

High Low Strong

agreement

Algorithm

adaptation effort

Medium High Strong

agreement

Power

consumption

Medium Low Limited

research

 Vol.5 No.1 JANUARY (2026) 82

INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT

ISSN: 2053-3578 I.F. 12.34

Table 2 presents analysis of implementation factors influencing practical GPU

compression deployment, synthesized from challenges and considerations discussed across

reviewed literature. Memory transfer overhead emerges as the most consistently identified

performance limitation, as data movement between host system memory and GPU device

memory introduces latency that can substantially diminish net acceleration benefits for smaller

datasets [7]. This factor explains the data size thresholds identified in Table 1, below which

CPU-based compression may achieve superior overall performance despite slower per-

operation execution.

Thread divergence, occurring when parallel threads follow different execution paths due

to conditional branching, presents medium impact with high mitigation complexity.

Compression algorithms frequently employ conditional logic for pattern matching and

encoding decisions, creating divergence scenarios that reduce effective parallelism.

Researchers have developed branch-free algorithm variants and predication techniques to

address this challenge, though such modifications increase implementation complexity and may

alter computational characteristics [10].

Hardware availability considerations encompass both physical GPU presence and

capability matching between algorithm requirements and available resources. While GPU

computing has achieved broad adoption in data centers and high-performance computing

environments, edge computing and embedded systems may lack suitable hardware,

constraining deployment contexts. Power consumption emerges as an underexplored factor in

reviewed literature, with limited research examining energy efficiency comparisons between

CPU and GPU compression implementations despite relevance to mobile and resource-

constrained environments.

CONCLUSION

This systematic analysis of graphics processing unit application in data compression

algorithms reveals substantial acceleration potential alongside meaningful implementation

considerations. GPU-accelerated compression demonstrates speedup factors ranging from 3x

to 25x depending on algorithm characteristics, with image and video compression exhibiting

superior parallelization suitability compared to lossless dictionary-based methods. Memory

transfer overhead emerges as the primary practical limitation, establishing minimum data size

thresholds below which GPU acceleration provides diminished benefits.

The findings support strategic GPU deployment for high-throughput compression

applications processing large data volumes, while acknowledging that traditional CPU-based

 Vol.5 No.1 JANUARY (2026) 83

INTERNATIONAL JOURNAL OF EUROPEAN RESEARCH OUTPUT

ISSN: 2053-3578 I.F. 12.34

implementations remain appropriate for smaller-scale or resource-constrained contexts. Future

research directions should address energy efficiency comparisons, hybrid CPU-GPU

optimization strategies, and emerging hardware architectures that may alter current

performance relationships. As data generation continues accelerating across all sectors, GPU-

accelerated compression will likely assume increasing importance in meeting processing

demands while managing storage and transmission resource constraints.

REFERENCES

1. Salomon, D. Data Compression: The Complete Reference / D. Salomon. –

London: Springer-Verlag, 2007. – 1092 p.

2. Kirk, D.B. Programming Massively Parallel Processors: A Hands-on Approach

/ D.B. Kirk, W.W. Hwu. – San Francisco: Morgan Kaufmann, 2016. – 576 p.

3. Владимиров, А.А. Параллельные вычисления на графических процессорах

/ А.А. Владимиров, С.С. Петров // Вестник информационных технологий. – 2019. – № 4.

– С. 45-52.

4. Nvidia Corporation. CUDA C++ Programming Guide. – Santa Clara: Nvidia,

2023. – 428 p.

5. Ozsoy, A. CULZSS: LZSS Lossless Data Compression on CUDA / A. Ozsoy,

M. Swany // IEEE International Conference on Cluster Computing. – 2011. – P. 403-411.

6. Sanders, J. CUDA by Example: An Introduction to General-Purpose GPU

Programming / J. Sanders, E. Kandrot. – Boston: Addison-Wesley, 2010. – 312 p.

7. Каримов, Ф.И. Оптимизация алгоритмов сжатия данных на основе CUDA

/ Ф.И. Каримов, Б.Т. Юсупов // Информатика ва энергетика муаммолари. – 2020. – № 2.

– С. 78-85.

8. Balevic, A. Parallel Variable-Length Encoding on GPGPUs / A. Balevic // Euro-

Par 2009 Parallel Processing Workshops. – Berlin: Springer, 2010. – P. 26-35.

9. Расулов, М.Х. Маълумотларни сиқиш усулларининг замонавий

ёндашувлари / М.Х. Расулов // Ахборот технологиялари журнали. – 2021. – № 3. – С. 112-

119.

10. Patel, R.A. Parallel Lossless Data Compression on the GPU / R.A. Patel, Y.

Zhang, J. Mak // Innovative Parallel Computing Conference. – 2012. – P. 1-9.

