

## ANALYSIS OF THE MAIN ECONOMIC INDICATORS AND TRENDS OF THE ORGANIZATION OF TRANSPORT SERVICES IN UZBEKISTAN

**Aytiyeva Sevara**

PhD, Associate Professor of the Department of "Business Management",  
Tashkent State University of Economics

**Abstract.** This article provides a comprehensive analysis of the main economic indicators of the organization of transport services in Uzbekistan and their development trends in recent years. The study assessed the share of the transport sector in gross domestic product, freight and passenger turnover, volume of services, investment dynamics, infrastructure development, and efficiency indicators based on economic analysis and comparative methods. Also, internal and external factors affecting the activities of the sector, the competitive environment, and the state of the logistics system were studied based on a systematic approach. The results of the analysis show that there is a steady growth trend in the transport services market, but the need for modernization and digitalization of the infrastructure remains. The article develops practical recommendations for increasing the economic efficiency of the sector, improving logistics chains, and strengthening investment activity.

**Keywords:** transport, logistics, efficiency, service provision, development, motor transport.

### 1. Introduction

Scientific research is being conducted in the world in such areas as modeling of general service processes, increasing the efficiency of the system, optimizing the volume of service work, and coordinating the flow rate entering the system with service capabilities. In this area, special attention is paid to modeling the processes of rapid and effective planning of the work of motor vehicles entering the general service system in discrete and continuous cases. At the same time, methods aimed at reducing inefficient losses and costs in the transportation process by coordinating the activities of motor vehicles and loading vehicles are of great importance.

In our republic, large-scale measures are being taken to conduct research and improve the technology of transporting scattered construction loads based on the methods and approaches of the theory of general service.

### 2. Literature review

The basics of using small business forms of organizing freight transportation were studied by A.J.M.Seco [1], J.H.G.Goncalves, Joao Figueira de Sousa, Anna Ibraeva [2], U.Migary, O.Solvela, G.White, K.Freeman, S.Harrison, J.Henderson, D.Hilgers, J.Schumpeter and others.

Among modern scientists who deal with the problems of motor transport enterprises, Yakutin Yu.V.[3], Kurbatov O.N., Konovalova T.V.[4], Nadiryan S.L., Mironova M.P., Mironova Yu.P., Morozova I.A.[5], Melnik T.S.[6], V.V. Pechatkin, M.A. Nikolaev and others can be mentioned separately.

Among local scientists, the problems of using small forms of entrepreneurship in organizing passenger transportation and the development of small businesses have been studied by such economists as S.S. Gulomov [7], A.J. Kakhkhorov [8], Gafurov U.[16,17,18], S.Sh. Yusupov. At the same time, despite the existence of numerous studies by local and foreign economists in this area, the issues of improving the management mechanisms of business structures based on the production of integrated products require additional research.

The organization of transport services has been widely examined in economic and logistics literature as a key determinant of regional development, trade efficiency, and enterprise competitiveness. Early theoretical foundations were established within transport economics, where authors such as Button (2010) emphasized the role of transportation infrastructure in reducing transaction costs and improving market accessibility. Efficient transport systems were shown to directly influence productivity, mobility of resources, and the spatial distribution of economic activity.

Subsequent studies expanded the analysis toward performance measurement and economic indicators. Rodrigue, Comtois, and Slack (2020) argue that indicators such as freight turnover, cost per ton-kilometer, delivery time, fleet utilization, and service reliability are essential for evaluating the effectiveness of transport service organizations. These metrics allow enterprises and policymakers to assess operational efficiency and identify bottlenecks within supply chains. Similarly, Winston (2013) highlights that cost structures, pricing policies, and economies of scale significantly affect the financial sustainability of transport operators.

From a logistics and supply chain perspective, Christopher (2016) and Bowersox et al. (2019) stress the integration of transport services with inventory management and distribution systems. They demonstrate that coordinated transport planning improves responsiveness to demand fluctuations and enhances customer service levels. Recent research also underlines the impact of digitalization, intelligent transport systems, and data analytics on optimizing routes, reducing fuel consumption, and improving service transparency.



Moreover, sustainability trends have gained increasing attention. Studies focus on environmental indicators, energy efficiency, and green logistics practices as critical components of modern transport service organization. Overall, the literature suggests that analyzing economic indicators and trends provides a comprehensive basis for improving operational performance and strategic planning, though further empirical models are needed to evaluate transport services at the organizational level.

### 3. Methodology

Economic analysis and systematic analysis methods were used for the purpose of deep and comprehensive evaluation of the studied economic processes in this study. Through the method of economic analysis, the financial and economic indicators of the object's activity, the efficiency of resource use, the composition of costs and the level of effectiveness were quantitatively studied. Dynamic, comparative, structural, and coefficient analysis methods were used to determine the trends, correlations, and efficiency levels of indicators over time. Also, with the help of factor analysis, the main economic factors influencing the final indicators were distinguished and their level of influence was evaluated.

Systematic analysis made it possible to consider the research object as a whole system, to determine its structural elements, internal and external relations and functional dependencies. Based on this approach, economic processes were analyzed through the "input-process-output" model, revealing causal relationships between resources, management mechanisms, and results. Systematic approach has gained importance in comprehensive assessment of interaction between elements, identification of problems and development of effective management decisions.

The harmonious application of these two methods provided the theoretical and practical basis of the research, created an opportunity for in-depth analysis of economic processes, identification of factors of their sustainable development, and development of strategic recommendations. In this way, the methods of economic and systematic analysis served as an important scientific-instrumental base of the research methodology.

### 4. Analysis and results

In the Republic of Uzbekistan, passenger transport services grew by an average of 14% in 2015–2023, and by type of transport, the volume of passenger services by rail, taking into account the pandemic period, amounted to 20.1 and 9.7 million people, respectively, while by car, 5,293.2 and 6,270.2 million people were transported (Table 1).

**Table 1**



## Passenger transportation and passenger turnover by types of transport

| Indicators                             | 2000           | 2005           | 2010           | 2015           | 2020           | 2021           | 2022           | 2023           |
|----------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Transported passengers, million people | <b>3 595,9</b> | <b>3 962,4</b> | <b>4 072,0</b> | <b>5 380,0</b> | <b>5 295,9</b> | <b>6 029,7</b> | <b>6 245,3</b> | <b>6 452,0</b> |
| railroad                               | 14,6           | 15,1           | 14,5           | 20,1           | 6,2            | 7,9            | 9,0            | 9,7            |
| car 1                                  | 3 284,7        | 3 796,4        | 3 962,6        | 5 293,2        | 5 248,5        | 5 914,2        | 6 092,1        | 6 270,2        |
| trolleybus                             | 77,1           | 16,8           | 1,6            | 0,8            | 0,3            | 0,5            | 0,5            | 0,7            |
| tram                                   | 92,4           | 43,3           | 25,8           | 11,4           | 1,2            | 2,3            | 2,9            | 3,4            |
| metropolitan                           | 125,7          | 89,9           | 65,6           | 52,3           | 38,8           | 101,8          | 136,7          | 162,7          |
| airway                                 | 1,5            | 0,9            | 1,9            | 2,2            | 0,9            | 3,0            | 4,1            | 5,3            |
| Passenger turnover, bln. passenger-km  | <b>30,9</b>    | <b>46,2</b>    | <b>83,8</b>    | <b>120,1</b>   | <b>118,3</b>   | <b>137,0</b>   | <b>146,5</b>   | <b>152,7</b>   |
| railroad                               | 2,2            | 2,1            | 2,9            | 3,8            | 1,8            | 3,1            | 3,6            | 3,9            |
| car 1                                  | 23,3           | 38,6           | 74,5           | 109,1          | 113,2          | 127,9          | 131,0          | 133,8          |
| trolleybus                             | 0,3            | 0,1            | 0,02           | 0,02           | 0,01           | 0,01           | 0,01           | 0,02           |
| tram                                   | 0,3            | 0,2            | 0,1            | 0,04           | 0,004          | 0,01           | 0,01           | 0,01           |
| metropolitan                           | 0,9            | 0,6            | 0,5            | 0,4            | 0,3            | 0,7            | 1,0            | 1,2            |
| airway                                 | 3,9            | 4,6            | 5,8            | 6,8            | 3,0            | 5,3            | 10,9           | 13,8           |

Note:

1) Due to the change in the method of calculating individual types of activities, the data was clarified from 2010

Passenger traffic by mode of transport in 2023 amounted to 152.7 billion passenger km, while freight traffic amounted to 32.6 billion passenger km, which is an increase of 32.6 billion passenger km compared to 2015. According to calculations, in 2015, railway and road traffic accounted for 3.8 and 109.1 billion passenger km, respectively, and by 2023, this figure will be 3.9 and 133.8 billion passenger km, indicating that the distance of passenger transportation is increasing relative to the number of passengers (Table 2).



Table 2

Number of passengers carried by road transport (million passengers)

|                            | 2000    | 2005    | 2010    | 2015    | 2020    | 2021    | 2022    | 2023    |
|----------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Republic of Uzbekistan     | 3 284,7 | 3 796,4 | 3 962,6 | 5 293,2 | 5 248,5 | 5 914,2 | 6 092,1 | 6 270,2 |
| Republic of Karakalpakstan | 110,0   | 97,0    | 79,7    | 111,7   | 131,4   | 137,5   | 144,6   | 146,8   |
| regions:                   | 172,3   | 169,3   | 412,2   | 624,4   | 648,5   | 715,9   | 731,7   | 737,8   |
| Andijan                    | 137,6   | 149,3   | 173,1   | 260,5   | 267,7   | 278,4   | 290,4   | 292,3   |
| Bukhara                    | 78,3    | 111,2   | 58,3    | 77,3    | 88,8    | 95,9    | 92,2    | 93,7    |
| Jizzakh                    | 188,7   | 205,7   | 159,2   | 257,2   | 266,4   | 308,0   | 316,0   | 333,5   |
| Kashkadarya                | 94,9    | 100,2   | 89,9    | 132,1   | 158,3   | 171,0   | 174,2   | 178,4   |
| Navoi                      | 178,6   | 159,7   | 307,7   | 391,8   | 414,2   | 447,1   | 449,9   | 457,5   |
| Namangan                   | 229,1   | 233,5   | 311,9   | 457,6   | 415,8   | 423,4   | 432,8   | 436,9   |
| Samarkand                  | 162,3   | 220,1   | 163,2   | 237,7   | 225,0   | 265,1   | 281,3   | 290,0   |
| Surkhandarya               | 82,7    | 96,2    | 55,0    | 66,3    | 73,5    | 85,0    | 85,1    | 87,7    |
| Syr Darya                  | 561,4   | 649,2   | 549,8   | 647,8   | 600,5   | 703,9   | 731,0   | 739,2   |
| Tashkent                   | 366,9   | 427,1   | 393,0   | 587,3   | 582,8   | 674,2   | 689,2   | 697,6   |
| Ferghana                   | 122,5   | 211,6   | 257,8   | 346,3   | 368,4   | 437,6   | 448,4   | 459,9   |
| Khorezm                    | 799,4   | 966,4   | 952,1   | 1 095,1 | 1 007,2 | 1 171,2 | 1 225,3 | 1 318,9 |

The number of passengers transported by road transport was 5,293.2 million passengers in 2015, and by 2023 it will be 6,270.2 million passengers. Accordingly, by region, we can see that the largest indicator was Tashkent city, which transported 1,095.1 million passengers in 2015, and by 2023 it will reach 1,318.9 million people. The lowest indicator for this indicator was Syrdarya region, which transported 66.3 and 87.7 million passengers, respectively (Table 2). In January-March 2024, the volume of market services provided by road transport reached 14,300.3 billion soums. The share of the provided market services in the total volume was

11.2%. In January-March 2024, the share of passenger road transport services reached 67.7%. In the total volume of road transport services, the largest share falls on taxi services - 53.5%.

**Table 3**

**The volume of services provided by the main types of economic activity (in billion soums)**

| Indicators                                                 | 2010        | 2015        | 2020         | 2021         | 2022         | 2023      |
|------------------------------------------------------------|-------------|-------------|--------------|--------------|--------------|-----------|
| Services - total                                           | 27<br>126,8 | 78<br>530,4 | 219<br>978,5 | 284<br>388,1 | 366<br>891,0 | 470 286,5 |
| Information and communication services                     | 2 080,2     | 5 181,5     | 13 852,3     | 17 755,1     | 24 508,1     | 32 226,6  |
| Financial services                                         | 2 643,7     | 8 206,7     | 45 783,0     | 59 733,3     | 80 849,1     | 106 363,8 |
| Transport services                                         | 10<br>524,4 | 26<br>817,3 | 53 662,9     | 67 238,6     | 83 985,6     | 108 477,7 |
| including: motor transport services                        | 5 124,0     | 16<br>032,1 | 28 474,1     | 36 249,3     | 41 726,8     | 51 272,7  |
| Residence and food services                                | 292,7       | 890,6       | 5 431,7      | 8 375,4      | 13 115,6     | 18 327,3  |
| Trade services                                             | 6 620,8     | 21<br>366,9 | 57 572,7     | 72 483,2     | 89 816,2     | 110 662,4 |
| Real estate services                                       | 809,3       | 2 757,3     | 6 016,9      | 8 081,1      | 9 581,7      | 12 064,3  |
| Educational services                                       | 763,1       | 2 681,4     | 8 539,4      | 12 102,6     | 15 858,4     | 20 418,4  |
| Health services                                            | 258,0       | 1 100,4     | 3 386,7      | 5 105,9      | 6 613,1      | 8 441,2   |
| Rent and leasing services                                  | 548,0       | 1 801,6     | 4 149,0      | 5 351,0      | 6 471,7      | 7 542,6   |
| Repair services of computers, personal and household goods | 624,2       | 1 724,5     | 3 347,8      | 4 680,5      | 5 707,3      | 7 021,5   |
| Personal services                                          | 756,5       | 2 366,5     | 5 032,2      | 6 764,1      | 8 670,8      | 10 916,0  |

|                                                                              |       |         |         |          |          |          |
|------------------------------------------------------------------------------|-------|---------|---------|----------|----------|----------|
| Architectural, engineering research, technical testing and analysis services | 299,2 | 841,0   | 4 907,5 | 6 306,8  | 7 284,2  | 7 959,7  |
| Other services                                                               | 906,7 | 2 794,7 | 8 296,4 | 10 410,5 | 14 429,2 | 19 865,0 |

Note:

- 1) Due to the change in the method of calculating individual types of activities, the data was clarified from 2010

According to the results of 2020, we can see that the volume of industrial output increased by 9.6 times compared to 2010, the volume of industrial production increased by 10.8 times over the same period, the volume of rubber and plastic products increased by 12.1 times, coke and oil refining products increased by 6.2 times, and the production of chemical products increased by 10.6 times in 2020 compared to 2010 (Table 3).

In the 4 years of rapid development (2020 compared to 2017), the volume of industrial production increased by 2.4 times compared to 2010, the volume of industrial production increased by 2.6 times over the same period, the volume of rubber and plastic products increased by 2.1 times, coke and oil refining products increased by 6.2 times, and the production of chemical products increased by 2.1 times in 2020 compared to 2010. This positive trend is primarily the result of the implementation of the tasks set out in the Strategy of Actions on Five Priority Areas of Development of the Republic of Uzbekistan for 2017-2021, adopted by our President Sh.M. Mirziyoyev with foresight, and the effective economic reforms being carried out for these purposes. If we look at the last two years of transport services, services worth 83,985.6 billion soums were provided in 2022-2023. This indicator indicates that the transport sector in our country is developing year by year, with services worth 108,477.7 billion soums provided by 2023.

## 5. Conclusions

The number of passengers transported by road transport was 5,293.2 million passengers in 2015, and by 2023 it will be 6,270.2 million passengers. Accordingly, by region, we can see that the largest indicator was Tashkent city, which transported 1,095.1 million passengers in 2015, and by 2023 it will reach 1,318.9 million people. The lowest indicator for this indicator was Syrdarya region, which transported 66.3 and 87.7 million passengers, respectively (Table 2). In January-March 2024, the volume of market services provided by road transport reached 14,300.3 billion soums. The share of the provided market services in the total volume was



11.2%. In January-March 2024, the share of passenger road transport services reached 67.7%. In the total volume of road transport services, a large share falls on taxi services - 53.5%. Therefore, the development of small businesses in passenger transport is of strategic importance.

In Uzbekistan, a relationship has been established between the number of secondary educational institutions, the natural increase in the population and the development of road transport services (the number of passengers transported by road transport). The fact that passenger transport services in our country grew by an average of 14% in 2015-2023 can be attributed to demographic growth and population incomes.

According to the implemented econometric models, it was found that a 1% increase in the volume of construction in small business and private entrepreneurship in our country leads to an increase in the turnover of small business and private entrepreneurship by 0.65%, and a 1% increase in employment in this sector leads to an increase in the turnover of small business and private entrepreneurship by 3.005%. It was also found that a 1% increase in the volume of trade in small business and private entrepreneurship leads to an increase in the turnover of small business and private entrepreneurship by 0.52%, and a 1% increase in the volume of agriculture, forestry and fisheries in small business and private entrepreneurship leads to a decrease in the turnover of small business and private entrepreneurship by 1.45%.

#### **References:**

1. Seco A.J.M., Goncalves J.H.G. The quality of public transport: relative importance of different performance indicators and their potential to explain modal choice. *Urban transport XIII: Urban Transport and the Environment in the 21 st Century*. 2017. 313 p; .
2. Ibraeva A., Sousa J.F. Marketing of public transport information provision. Elsevier.2014. 122 p.; Branislav R., Radenko M., Vladana R., Milena I., Dragan L. Marketing research on passenger satisfaction with public transport service in the city of Belgrade. *Traffic&transportation*. 2015. 47 p
3. Yakutin Yu.V., Kurbatov O.N. Features of marketing services in the field of transport logistics. *Transport Business in Russia*. 2010. 15 p; ;
4. Konovalova T.V., Nadiryan S.L., Mironova M.P., Mironova Yu.P. Features of marketing research in the market of passenger transportation on request in the region. *Industry scientific and applied research: Construction, Transport*. 2015. 89 p; ;



5. Morozova I.A. Marketing support for the development of infrastructure of the transport services market. Abstract of diss. Doctor of Economics, 08.00.05. –Volgograd. 2008. - 50 p.;
6. Melnik T.S. Directions and types of marketing research in the field of passenger transportation, taking into account transport links. Bulletin of the Belarusian State University of Transport: Science and Transport. - 2017. No. 1, 102 p.
7. Gulyamov S.S. Efficiency of investments in the social sphere. Monograph. – T: IKTISODIYOT, 2019.;
8. Kakhkhorov A.J. Improving innovative marketing activities in the road transport system of Uzbekistan. abstract of dissertation. iq.fan.nom., 08.00.11. – Tashkent. 2018. – 57 p.
9. Ballou, R. H. (2004). Business logistics/supply chain management: Planning, organizing, and controlling the supply chain (5th ed.). Pearson Prentice Hall.
10. Bowersox, D. J., Closs, D. J., Cooper, M. B., & Bowersox, J. C. (2019). Supply chain logistics management (5th ed.). McGraw-Hill Education.
11. Button, K. (2010). Transport economics (3rd ed.). Edward Elgar Publishing.
12. Christopher, M. (2016). Logistics and supply chain management: Creating value-adding networks (5th ed.). Pearson.
13. Rodrigue, J.-P., Comtois, C., & Slack, B. (2020). The geography of transport systems (5th ed.). Routledge.
14. Winston, C. (2013). On the performance of the U.S. transportation system: Caution ahead. *Journal of Economic Literature*, 51(3), 773–824. <https://doi.org/10.1257/jel.51.3.773>
15. McKinnon, A., Browne, M., Whiteing, A., & Piecyk, M. (2015). Green logistics: Improving the environmental sustainability of logistics (3rd ed.). Kogan Page.
16. Gafurov, U. V., Gafurov, U. V., & Zulfiya, A. K. (2019). Theoretical and methodological basis of the nature study and characteristics of craft work. *Economics and innovative technologies*, 2019(5).
17. Gafurov, U., Juzbaev, A. O., & Akbarov, N. G. (2022, December). Improving the mechanism for financing activities of small businesses in digital economy: in case of the Republic of Karakalpakstan. In *Proceedings of the 6th International Conference on Future Networks & Distributed Systems* (pp. 223-230).
18. Gafurov, U., Tursunov, B. O., & Anvarovich, A. S. Model Analysis of the Effect of the Nominal Exchange Rate on Economic Growth in the Conditions of A Digital Economy.

