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Abstract 

The concept of circular inversion is introduced into the set of star shapes, and the 

algorithm for generating a circular inversion fractal uses a generalized substitution for the 

circular transformation. As a result, a star-shaped inversion fractal is obtained. The presented 

examples show that it is possible to obtain a wide variety of fractal patterns using the proposed 

method, and these patterns differ from those obtained by the circular inversion method. In 

addition, since a circle is a set of star shapes, the proposed generalization allows for a very easy 

and intuitive transformation of the circular inversion fractal. 
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The concept of fractals was first introduced into science by Mandelbrot in the 1970s [1]. 

Building on Mandelbrot's conjectures, Barnsley put forward several innovative ideas that shed 

light on the practical aspects of fractals. He introduced a method for modeling natural fractals 

and used the concept of an iterative function system (IFS) as a generative tool. Fractals have 

since been used in many applications in pattern recognition [3], image processing [4], computer 

graphics [5], and even in medicine,[6] and archaeology[7]. Fractals can be used in geometric 

design[8], computer graphics [9], image processing [10] and even in medicine [11]. 

Circular inversion fractals. The inversion of circles (inversion of circles), whose Loci 

plane is mentioned in Frege's book Apollonius, has been widely used in geometry since 

Apollonius introduced the inversion of circles. 

Definition 1. C - center Let o be a circle with radius R and let p be an arbitrary point 

outside o . If p   If r( t ) = o+ t ( p - o) is a point on the ray, where t ∈ [0,∞), then the following 

equation is satisfied: 

                       
2( , ) ( , ) ,d o p d o p R  (1) 
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here is  2 2: 0,d   R R the Euclidean metric and p  The reciprocal of p for a circle C 

(Figure 1). The point o is called the inversion center, and C is the inversion circle. The 

transformation that takes p and p turns it into is called the circular inversion transformation 

and is denoted by I C. 

(1) From the relation we can obtain the algebraic form of the circular inversion 

transformation. If we say o = (x o ,y o ) and p = (x p ,y p ) , then I C divides by e into a formula of the 

form : 

2

0 0 2 2
( ) ( , ) ( , ).

( ) ( )
C p o p o

p o p o

R
p I p x y x x y y

x x y y
     

  
               (2) 

  

 

  

 

 

 

 

 

Figure 1: Inversion of p for a circle with center o and radius R. 

By definition 1 , the point p is any point other than o , but the definition can also be applied to 

o [10]. If p = o , then I C ( o) = ∞ and if p = ∞ , then I C (∞) = o . As a result, I C   2 2ˆ   R R

is defined as. 

 Definition 2. Simple P A polygon is stellate if there is a point z that is not outside P , 

and a line segment for all points zp p in P lies entirely inside P. The above property is true. 

The location of the points z is the kernel of P. 

 All convex polygons are star polygons, which contain a core. The core of a star polygon 

is always convex. Figure 2 shows an example of a star polygon. 

 a star-shaped polygon can be generalized to a set as follows: 

p
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Definition 3. 
2

R  of A set S is a star if for every p S point z int If there is a point 

S (where int denotes the interior of zp SS ), then the line segment lies entirely inside S. The 

point z that is divided by e along its trajectory is the kernel of S.  

Figure 2: Star-shaped polygons and their cores 

Figure 3: Inversion of p for a given set of star shapes (triangles) . 

      S is a set of stars and Let there be a point o belonging to the kernel of S. Furthermore, 

assuming that there are points p other than o , the inversion of p with respect to S is determined. 

For this, a ray is passed from o to p - o. That is, ( ) ( )r t o t p o   the boundary and 

intersection b of S for ,  0,t  , are determined (Fig. 3). Since S is a star and o belongs to its 

core, the point b is unique. If the following equation holds, it is called the inversion of p with 

respect to S : 

 
2

( , ) ( , ) ( , ) .d o p d o p d o b                                                                (3) 

 For a circular inversion, the point o is called the center of inversion. p The 

transformation that takes and turns it into p is called the inverse transformation of a star-

shaped set and is denoted by I S. Of course, in a similar way, the definition of I S can be generalized to 

o , so that ( )SI o   and ( )SI o  . As can be seen from the above configuration, the 

inversion transformation of a star-shaped set is given by the inversion center o and can be 

different for the same set S. 

I S The algebraic expression for e is very similar to the following formula I C . If 0 0( , )o x y  

and ( , )p pp x y If , I S is divided by e as follows : 
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 
2

2 2

( , )
( ) ( , ) ( , ).

( ) ( )
S o o p o p o

p o p o

d o b
p I p x y x x y y

x x y y
     

  
(4) 

S  
2

R̂  into three components: B = int S (the boundary component), 
2ˆ \U SR (the 

non-boundary component), and ∂S. The star-shaped set inversion transformation has the 

following properties similar to the circle inversion: 

1. I S B and U are interchanged, 

2. I S is an identity in C, 

3. I S - contraction in U and Expansion in B, 

4. I S involution, that is, all
2ˆpR  for ( ( ))S SI I p p . 

and properties of the star-shaped inversion set transformation, an algorithm for generating 

approximations of star-shaped inversion fractals is constructed (Algorithm 1). This algorithm 

is a modified version of the stochastic inversion algorithm proposed by Frame and Cogevina [ 

10 ]. The modification consists in using the star-shaped inversion transform instead of the 

inversion circle transform. 

Algorithm 1: Random inversion algorithm. 

Login : S 1 ,... ,S k - star-shaped sets with selected inversion centers, p 0 - starting point outside 

S 1 ,...,S k , n >20 - number of iterations. 

Result: Limiting approximation of a finite set (a set of star- shaped inversion fractals). 

j = { 1 , . . . , k } random number from 

p = I S j (p 0 ) 

for I = 2 until n yes 

{ 

l = {1 , . . . , k } is a random number from 

while j = l or i n Se t  (S l , p ) yes 

l ={ 1, . . . , random number from k } 

j = l 

p = I S j ( p ) 

      if I > 20 then 

Plot p 

} 
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generate the fractal approximation, we need inversion transformations of the star set, a 

starting point outside the entire star set, and a series of iterations. First, an inversion is randomly 

selected and used to transform the starting point. Since the starting point is outside the star set 

defining the transformation , that is, it falls within the infinite U component of the 

transformation, and  

according to property 1, the transformed point is a transformation in the boundary component 

B of the transformation. Then, it randomly selects a transformation at each iteration with two 

constraints. The first constraint is that the points are not transformed by the transformation used 

in the previous iteration. This constraint follows from the involution of the I S involution 

(expression 4). Without this constraint, the number of points that can be approximated to the 

fractal can be reduced , and more iterations are required for better approximation. The second 

constraint is that the transformation of a point with a transformation that lies within the 

boundary component B cannot be performed. This limit is a consequence of Expression 3. The 

transformation is not an expansion , but a contraction, because allowing the transformation to 

be an expansion would push out the transformed points and complicate the approximation. The 

contraction also proves the convergence of the algorithm . If a change is selected, it will be 

converted to the points from the previous iteration. As in the random iterative algorithm for IFS 

, the first few points are skipped because they are not part of the approximation. The algorithm 

skips the first 20 steps. 

When the algorithm reaches a limit through iteration, the generated points (orbits of the 

initial point) converge to a finite set of limits, i.e., the limiting set of point trajectories. If some 

orbit p i is in the set of stars S j , then the next orbit is at point p i+1 I Sj ( p i ) may be e.g. The term 

finite set of limits (for circles) was introduced by Clancy and Frame. The proof of the 

convergence of the algorithm is similar to the proof of the circle inversion algorithm presented 

by Smith . 

The fractal approximation obtained by the algorithm is located in the region enclosed 

by a set of star shapes that define the transformations applied in the algorithm. This follows 

from the second constraint and expression (1). The second constraint assumes that the point to 

be transformed is in the infinite component of the transformation , and expression (1) 

determines that the point after the transformation is in the boundary component. Each point 

generated in this way lies in the finite component of some transformation applied in the 

algorithm. 
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Naturally, a circle is a set of star shapes. If the center of the circle belonging to the 

nucleus is the inversion center , the inversion transformation of the star-shaped set reduces from 

Syeck to the circle inversion transformation. But for circles, any point can be taken from the 

nucleus inside. Examples show that changing the inversion center of circles allows you to 

deform the original circle inversion fractal [11]. 

existing algorithm to find intersections with rays and determine whether a point is 

present in a given shape when performing a star set transformation . In addition, if polynomial 

curves are also passed when modeling the star-shaped boundary, there are corresponding 

algorithms to find intersections with rays and inclusion tests. In general, this task can be difficult 

to solve and therefore complicated to implement. 

Although the study only shows 2D changes, the above ideas can be extended to 3D . 

The set used in 3D should have similar properties to the set of stars in 2D . 

The example in Figure 4 shows the result of changing the inversion center in a circular 

inversion fractal. The fractal is represented by eight circles. Figure 4(a) shows the fractal 

obtained by the Frame and Kogevin method . Figure 4(b) shows that the center of inversion of 

the large circle has been moved diagonally closer to the boundary of the circle . Note that the 

shape of the fractal changes and the points are expanded. Figure 4(c) shows that the center of 

inversion of the small circle has been moved closer to the boundary of the circle. Moreover, in 

this case, the shape follows the point. Figure 4(d) shows the change in the inversion centers of 

all the large circles and the inversion centers of the two smaller circles (the upper and lower 

positions in the figure, respectively). The center of the large circle is shifted asymmetrically . 

This caused the shape to lose its central symmetry, but the axisymmetricity was preserved. If 

the inversion center is completely moved asymmetrically , an asymmetric pattern is obtained. 

As can be seen from these examples , a circular inversion fractal can be easily deformed. 
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( a) (b) 

  

(c) (d) 

Figure 4 : An example of changing the inversion center along a circle in a set of circular and 

star-shaped inversion fractals . 

As a result of this research, an algorithm was developed to generalize the circular 

inversion transformation to a set of star shapes and, as a result, to create a circular inversion 

fractal, and star-shaped inversion fractals. 
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